On the Demand for High-Beta Stocks: Evidence from Mutual Funds

Susan E. K. Christoffersen
University of Toronto and Copenhagen Business School

Mikhail Simutin
University of Toronto

ABSTRACT

Prior studies have documented that pension plan sponsors often monitor a fund’s performance relative to a benchmark. We use a first-difference approach to show that in an effort to beat benchmarks, fund managers controlling large pension assets tend to increase their exposure to high-beta stocks, while aiming to maintain tracking errors around the benchmark. The findings support theoretical conjectures that benchmarking can lead managers to tilt their portfolio toward high-beta stocks and away from low-beta stocks, which can reinforce observed pricing anomalies. (JEL G11, G23)

We are grateful to the seminar participants at Copenhagen Business School, University of New South Wales, the University of Technology Sydney, University of Sydney, University of Texas at Dallas, HEC Montreal, Ivey School of Business, University of Vienna, and University of Toronto, as well as conference participants at the 2012 SIFR Conference on Mutual Funds, 2014 LSE Paul Woolley Center 7th Annual Conference, FRIC Symposium April 2014, National Business and Economics Society Meetings 2014, 2012 Clute Institute International Conference, 2012 NFA Meetings, 2014 FMA Meetings, 2014 EFA Meetings, 2015 AFA Meetings, and 2015 FIRS Meetings. Comments from the Editor, two anonymous referees, Kee-Hong Bae, Jack Bao, Rawley Haimer, Ralph Koijen, Junghoon Lee, and Clemens Sialm are particularly appreciated. Previous versions of this paper were circulated under the title “Risk-taking and retirement investing in mutual funds.” All errors are our own. We gratefully acknowledge support from the Social Sciences and Humanities Research Council of Canada (430-2013-0588 and 435-2013-0151). Send correspondence to Mikhail Simutin, Rotman School of Management, 105 St. George Street, Toronto, ON M5S 3E6, Canada; telephone: (416) 946-8088, E-mail: mikhail.simutin@rotman.utoronto.ca.
The movement from defined benefit (DB) to defined contribution (DC) plans over the past 20 years has opened the retirement market to mutual funds. Since 1995, retirement assets controlled by mutual funds have increased from $914 billion to $7.3 trillion, more than double the pace of total retirement savings growth and serving as a large source of growth for the mutual fund industry. Competition to enter and stay on DC pension platforms is fierce and several studies find strong evidence that a fund’s past relative performance and expenses are strong predictors of a fund’s inclusion as an offering to employees in a sponsor’s pension plan (see Sialm, Starks, and Zhang 2015; Pool, Sialm, and Stefanescu 2016).

Plan sponsors rely heavily on benchmarking as a defensible mechanism in deciding which funds to keep on and remove from the plan. In fact, Section 2550.404a-1 of the Employee Retirement Income Security Act (ERISA) outlines three criteria that fiduciaries should include, but not be limited to, as part of the “appropriate consideration” for the evaluation of investment duties. Specifically, these are “(a) the composition of the portfolio with regard to diversification; (b) the liquidity and current return of the portfolio relative to the anticipated cash flow requirements of the plan; and (c) the projected return of the portfolio relative to the funding objectives of the plan.” Given the guideline to consider returns relative to funding objectives, it is no surprise that investment policy statements of corporate DC plans often provide explicit relative benchmarks for investment options in their portfolio.1 And even though ERISA provisions do not apply directly to state and local government plans, “these requirements

1 Samples of DC plan investment policy statements for Morgan Stanley and a consultancy group fi360 can be found at http://www.morganstanleyfa.com/public/facilityfiles/sb090312151937/bc4a9af1-fdcd-44e0-9d6e-c5e7fc7db03.pdf and http://www.fi360.com/fa/help/Report_Samples/IPS_401k_Plan.pdf.
indirectly influence [government] plan design and administration in areas [of] investment and fiduciary standards.”

Given external benchmarking pressures from the plan sponsor, the question we consider is whether fund managers alter their behavior when they know their place on the sponsor’s menu depends on outperforming a benchmark. Our main premise is that managers with a larger portion of sponsor-controlled assets in their funds are more sensitive to the benchmarking criteria and therefore more apt to change their behavior to beat benchmarks. While benchmarking is prevalent in all areas of the asset management industry, the analysis of DC plans provides a unique opportunity to investigate the effects of benchmarking since DC assets are mixed with retail assets that may be less subject to explicit benchmarks. We are therefore able to use the portion of defined contribution assets in a mutual fund as a proxy of the importance to the manager of beating benchmark returns and relate this proxy to managerial portfolio decisions.

How might fund managers alter their behavior to beat a benchmark? We consider a tactic to increase exposure to high-beta stocks. To illustrate the mechanism linking benchmarking with the demand for high-beta stocks, consider a long-only fund that is benchmarked to the market portfolio with a positive expected excess return. The fund has a choice between two stocks with the same alpha but one with a beta of 1.25 and the other with a beta of 0.75. With a requirement to beat the benchmark return, a leverage-constrained fund manager has a preference for the high-beta stock (holding alpha constant) because it will yield in expectation a return that is more likely to beat the benchmark. In general, managers evaluated against a benchmark with a

2 See page 6 of July 2001 EBRI Issue Brief (http://www.ebri.org/pdf/briefspdf/0701ib.pdf). See also the investment policy for San Bernardino County: it mirrors the same criterion used in the investment policy statements of sample corporate plans, see http://www.sbcounty.gov/hr/PDF/investment_policy.pdf.

3 An alternative strategy to beat the benchmark, or to increase the beta exposure of a fund, would be to borrow. Frazzini and Pedersen (2014) argue that mutual funds and pension funds are examples of leverage-constrained institutions, so our focus is on determining whether there is evidence that funds tilt towards high-beta stocks as they posit. Almazan et al. (2004) document that few mutual funds use leverage.
positive expected excess return will have this incentive (see also Baker, Bradley, and Wurgler, 2011; Frazzini and Pedersen, 2014; Buffa, Vayanos, and Woolley, 2015).

Using a sample of funds that report their retirement holdings to Pensions & Investments from 2003 to 2013, we first establish that funds with a larger portion of DC assets hold higher-beta stocks. We observe that these funds increase their holdings of high-beta stocks while decreasing their exposure to low-beta stocks, consistent with a manager attempting to beat a benchmark. Sorting funds into quintiles on the proportion of DC assets reveals that the fund beta rises by over 8% if an investor chooses a high-DC fund over a low-DC fund.

By using a first-difference approach, we provide evidence against the possibility that the relation we find is simply an artifact of the plan sponsor selecting funds with high betas. We document that an increase in DC assets is associated with an increase in future fund betas. In contrast, we do not observe a reverse relation between changes in betas and future changes in DC assets. This evidence is supported when looking at how managers choose the weights on stocks in their portfolios. Instead of focusing only on changes in fund-level beta, we also compute a weighted average beta of individual stocks in the portfolio to create a “holdings-level” beta. As with the beta calculated from fund returns, the future holdings-level beta also increases in response to increases in DC assets of the fund.

We test this shift in holdings more directly by looking at the portfolio of holdings of funds in the highest quintile of DC assets (high-DC funds) and observe that these funds hold 3.8% more of their portfolio in high-beta stocks and hold 2.8% less of their portfolio in low beta stocks.

By tilting the portfolio to high-beta stocks, the fund manager increases the chance to “beat” the benchmark but runs the risk of increasing tracking error. Given that managers have an
incentive to reduce this risk, we test whether managers with a higher portion of DC assets are more precise in targeting beta to lie above one so that overall, variance around the benchmark for these managers is minimized when compared to managers with lower amounts of DC assets. The managers in the latter group are less constrained to beat the benchmark so accordingly can choose strategies with a wider variance in beta exposure. In line with this, we find that the cross-sectional distribution of fund betas is significantly narrower when comparing funds with more sponsor-controlled assets to those with less. As a result, high-DC funds have, on average, both higher betas and lower return variance around benchmarks than do low-DC funds.

To more thoroughly evaluate the effectiveness of strategies to maintain or lower variance around benchmark returns, we relate the fraction and changes of DC assets in a fund to future levels and changes in tracking errors and three other measures of managerial activeness: (1) Active share developed by Cremers and Petajisto (2009); (2) the R^2 proxy for managerial passiveness of Amihud and Goyenko (2013); and (3) Active weight proposed by Doshi, Elkamhi, and Simutin (2015). Using our first-difference approach, we observe that an increase in DC assets results in an increase in subsequent R^2 measures of passiveness, a decrease in both Active share and Active weight, and does not significantly change the future tracking error. On all accounts, it appears that managers are strategically increasing beta exposure while maintaining and even reducing the volatility of returns around the benchmark.

How effective is a high-beta strategy in improving relative performance and attracting flows? Frazzini and Pedersen (2014) show that the slope of the security market line is positive but flatter than the capital asset pricing model (CAPM) predicts. Based on this, we expect funds with higher betas to achieve higher returns relative to the benchmark but with lower alphas. Our empirical evidence suggests that fund managers of large pension assets appear to improve their
relative performance with no adverse effects to fund alpha, consistent with an interest to maintain absolute returns while improving relative returns. If plan sponsors pay attention to relative returns more so than betas, then the effect of a high-beta strategy could be successful in attracting investors. Our analysis shows that DC flows respond positively to relative returns, but not to the estimated beta of the fund, so overall there is a positive net indirect effect on flows by following a high-beta strategy. We find that a one standard deviation increase in fund beta improves relative performance by 0.57% annually, which in turn leads to an increase in annual DC flows of between 0.90% and 1.31%.

1. Related Literature

This paper bridges several lines of the literature on retirement investing, risk-taking incentives of fund managers, and the role of index-linked investing in altering portfolio decisions. The paper also contributes to the literature on the high-beta, low-alpha anomaly.

1.1 Retirement investment

Much of the literature on retirement investment discusses asset allocation and trading decisions of retirement plan participants and finds that plan participants exhibit inertia in responding to different fund characteristics and performance. A study by Sialm, Starks, and Zhang (2015) uses data similar to ours and finds a strong role of the DC pension plan sponsor in overcoming this investor inertia by deciding when to include or remove managers from a menu of options. They also document that expenses and performance relative to a peer group of funds are important criteria used by sponsors in selecting funds to the platform. Hand-collected data from Pool, Sialm, and Stefanescu (2016) supports this evidence on the selection criteria used by plan sponsors.

4 See, for example, Madrian and Shea (2001), Agnew, Balduzzi, and Sunden (2003), Mitchell, Utkus, and Yang (2005), Mitchell et al. (2006), and Choi et al. (2004, 2006). Benartzi and Thaler (2007) provide an excellent review of investment biases of retirement plan participants.
sponsors and also indicates a preference toward including funds affiliated with the plan trustee. Studying defined benefit plan sponsors, Goyal and Wahal (2008) find that expenses and returns relative to the benchmark are important criteria in the selection and termination of asset managers. Our study builds on this research by considering the effects of DC plan sponsor oversight on subsequent managerial behavior.

1.2 High-beta, low-alpha anomaly

Several empirical studies have shown that investing in low-beta stocks yields significantly higher risk-adjusted returns than investing in high-beta stocks. While the security market is positively sloped, it is flatter than one would expect theoretically (Black, Jensen, and Scholes 1972), and the anomaly creates a puzzle as it contrasts with the underpinnings of the CAPM (e.g., Sharpe 1964). It is difficult to rationally explain why the phenomenon does not disappear if institutions can simply take advantage of it by either altering the leverage in their portfolios or by directly investing in low-beta stocks. Frazzini and Pedersen (2014) argue that most large asset managers are restricted in their ability to lever their portfolios. The heightened demand for high-beta stocks is theoretically explained by either disagreement about macroeconomic conditions (Hong and Sraer 2012) or by benchmarking pressures (see Baker, Bradley, and Wurgler 2011; Buffa, Vayanos, and Woolley 2015).

Central to the benchmarking argument is the fact that benchmark excess returns are expected to be positive. Evaluating managers over longer horizons only exacerbates the
incentives of managers to buy high-beta stocks since the likelihood of a positive benchmark return increases with the investment horizon.\(^5\)

1.3 Risk-taking

Our study also contributes to the literature on risk-taking by fund managers. Brown, Harlow, and Starks (1996) show that funds with relatively poor performance early in the year increase their risk in the latter part.\(^6\) Balduzzi and Reuter (2012) study characteristics of target-date funds and document heterogeneity in risk taken by funds with the same target date. Our findings also relate to Huang, Sialm, and Zhang (2011), who explore the impact of changes in risk of a fund’s portfolio on future fund performance. In contrast with the previous literature, we explore a new facet of managerial incentives to modify the risk of a fund: the benchmarking pressures arising from managing sponsor-controlled retirement assets.

1.4 Index-linked investing

With the growth of exchange-traded and index mutual funds, an increasing number of asset purchases and sales are tied to indices, and an extensive literature studies the impact of index-linked investing on capital markets.\(^7\) Prior literature relating benchmarks to institutional demand for stocks has focused on the impact of index-linked investing on the returns and correlations of stocks being added or deleted from an index.\(^8\) In contrast to these studies, we focus on the demand effects for high-beta stocks created by managers trying to beat index returns.

\(^5\) For example, if benchmark returns are iid normal with annual mean of 10% and standard deviation of 15%, then the probabilities of the benchmark being positive over one, two, and three years are 75%, 83%, and 88%, respectively (see Christoffersen and Diebold 2006).

\(^6\) Other studies analyzing changes in risk within a calendar year include Chevalier and Ellison (1997), Busse (2001), Kempf and Ruenzi (2008), and Schwartz (2012).

\(^7\) For an excellent review, readers are directed to Wurgler (2011) and the specific research papers cited therein.

2. Data

Our sample includes funds that report their defined contribution plan holdings to Pensions & Investments (P&I). P&I conducts annual surveys that query fund managers on their positions in DC assets. Our analysis is based on surveys administered to domestic equity funds for the years 2004 through 2014, which report information for the year prior to the survey so our sample runs from 2003 to 2013. Similar data has been used in Christoffersen et al. (2005), Sialm and Starks (2012), and Sialm, Starks, and Zhang (2015) and readers are directed to these papers for more details of the surveys.

We match P&I data to the Morningstar database, from which we collect information on funds’ investment objectives, size, total expenses, turnover, tracking errors, and returns. For analysis based on fund holdings, we also obtain holdings data from the Center for Research in Security Prices (CRSP) Survivor-Bias-Free Mutual Fund Database and Thomson Reuters. We restrict the sample to funds with Morningstar broad category group of “Equity,” excluding funds with “Allocation,” “Commodities,” “Tax Preferred,” “Fixed Income,” and “Alternative” categories. We also eliminate instances where reported DC assets exceed fund size. The final sample contains 4,603 fund-year observations representing 1,093 distinct funds.

We obtain most of our variables directly from Morningstar or CRSP, and calculate the remaining variables as described below. Alpha and Beta are the intercept and slope coefficient from market model regressions of a fund’s excess returns on the CRSP value-weighted market return in excess of the 3-month T-bill rate. Idiosyncratic volatility is the standard deviation of residuals from this regression. P&I data are updated annually, and we estimate alphas, betas, and
idiosyncratic volatility from regressions using one year of monthly data.\footnote{Our results are robust to using daily fund returns from CRSP.} \textit{Holdings-level beta} provides an alternative measure of a fund’s market risk by value-weighting betas of stocks held by each fund. It is only affected by the choice of a manager to tilt the portfolio to high- or low-beta stocks, and unlike fund-level beta it is not influenced by changes in cash or leverage, or by trading costs. To calculate holdings-level beta for fund i in year t, we use monthly data from year t to calculate market model beta $\beta_{j,it}$ for each stock j held by fund i at the end of year t.\footnote{If a fund’s last portfolio holdings disclosure occurs before the end of December, we infer the fund’s year-end positions by assuming that it did not trade since the last disclosure date. For example, if a fund revealed a position of $D_{j,Nov}^i$ dollars in stock j as of the end of November, we calculate the year-end value of this position as $D_{j,Dec}^{i} = D_{j,Nov}^i (1 + r_{j,Dec}^{i})$, where $r_{j,Dec}^{i}$ is the return on stock j in December.} The holdings-level beta is then calculated as the value-weighted average across all stocks, using the fraction $w_{j,it}$ of each stock in the equity portfolio as weights, $\sum_{j=1}^{N} w_{j,it} \beta_{j,it}$. We similarly calculate Amihud illiquidity of a fund’s stockholdings in year t by computing the Amihud (2002) illiquidity measure for each stock held by the fund and taking the value-weighted average. Illiquidity of a stock in a given year is the average of its daily absolute returns scaled by dollar volume where higher values correspond to higher levels of illiquidity. \textit{Relative return} is defined as the annual net fund return less the annual Morningstar category net return. \textit{DC flows} are expressed in decimals and calculated following Sialm, Starks, and Zhang (2015) as

$$DC \ flows_{i,t+1} = \frac{DC \ assets_{i,t+1} - DC \ assets_{i,t} (1 + R_{i,t+1})}{DC \ assets_{i,t} (1 + R_{i,t+1})},$$

where $DC \ assets_{i,t}$ is the dollar value of defined contribution assets in fund i at the end of year t and $R_{i,t+1}$ is the realized annual return earned by investors (assuming all distributions are reinvested) from the end of year t to the end of year $t+1$.
The last set of variables that we calculate for our analysis are those measuring managerial activeness or deviation from a benchmark. Tracking error comes directly from Morningstar and is expressed in percent per year. It measures the standard deviation of the difference between daily returns of a fund and its Morningstar-defined benchmark.\footnote{We compute tracking errors from one year of daily returns rather than from 12 monthly observations to reduce estimation noise. Our results are robust to using monthly data to compute tracking errors.} The R-squared measure of Amihud and Goyenko (2013) is calculated for year t as the coefficient of determination from a regression of a fund’s monthly excess returns in that year on the Carhart (1997) four factors. It is reported as a decimal ranging from 0 to 1. Active share of Cremers and Petajisto (2009) is one-half times the sum of absolute differences in weights of a manager’s portfolio and those of the relevant benchmark. It captures the fraction of a fund’s portfolio that is different from the benchmark index and is reported in decimals, ranging from 0 to 1.\footnote{We obtain Active share from Martijn Cremers’s Web site (http://activeshare nd.edu).} We also consider a newer measure of managerial activeness, Active weight of Doshi, Elkamhi, and Simutin (2015), defined for fund i at time t as

$$Active weight_{it} = \frac{1}{2} \sum_{j} |w_{jit} - w_{jit}^m|, \quad (2)$$

where w_{jit} is the weight of stock j in fund i’s equity portfolio at time t and w_{jit}^m is the weight that this stock would have been assigned had the manager market-cap weighted their equity portfolio. For a long-only portfolio, Active weight increases from zero for a manager whose positions are value-weighted and approaches one for a manager who deviates from a market cap-weighted portfolio. A manager is presumed to become more active and deviate more from the benchmark if they have lower measures of R-squared and higher measures of Active share, Active weight, and Tracking error. Total volatility of a fund is the annualized monthly standard deviation of fund returns expressed in percent per year.
2.1 Descriptive statistics

Table 1 summarizes fund size and defined contribution plan holdings, highlighting considerable cross-sectional differences in the proportions of assets in retirement money. While the average fund in the sample has approximately a quarter of its assets in DC plans, there is a large cross-sectional dispersion in the fraction of DC assets which will be helpful in differentiating benchmarking pressures across funds. The size of the average fund, measured in millions of dollars ($6,303 in 2013), is considerably larger than that of an average domestic equity fund in 2013 ($1,794 million according to the Investment Company Institute Factbook 2015). Table 1 also illustrates that the data are reported for a similar number of funds each year. This stability is important given that the data are based on a survey. We have consistent surveys through time from the same funds, which allows us to identify changes in behavior after the accumulation of defined contribution assets. We now explore how sponsors can affect managerial decisions.

3. Hypotheses and Preliminary Analysis

Our main objective is to determine whether oversight from plan sponsors may cause funds managing a large portion of sponsor-controlled assets to alter their behavior in trying to beat benchmark returns and in so doing may contribute to the high-beta, low-alpha phenomenon. Using a simple example, we can illustrate the tradeoffs of a manager incentivized to maximize risk-adjusted returns (alpha) versus one who is benchmarked against excess market returns. Let’s consider a setting where excess returns are modeled using the CAPM. Suppose the expected benchmark excess return is 10% and managers are asked to choose between two stocks: Stock A has an alpha of -2% and beta of 1.25, and stock B has an alpha of 2% and beta of 0.75. The
manager who is evaluated based on risk-adjusted returns would choose Stock B because of its higher positive alpha.

In contrast, a manager trying to beat a benchmark would favor Stock A because of its better excess return performance relative to the 10% benchmark: Stock A is expected to yield a 10.5% excess return, and stock B yields only a 9.5% excess return.13 The willingness of a benchmarked manager to trade off alpha for beta and favor stock A increases with a higher positive expected excess market return, arising either from a higher expected market return or lower risk-free rate.14

One can see immediately from this framework that the benchmarked manager has a preference for holding stocks with beta greater than 1. The insights of Buffa, Vayanos, and Woolley (2015) are also particularly relevant for our analysis as they provide an equilibrium framework where tilting toward high-beta stocks is an optimal strategy for managers facing a benchmark. In our empirical set up, we use the fraction of sponsor-controlled assets to proxy for a portfolio more closely following the portfolio choices of a benchmarked manager. Our main hypotheses are therefore:

\textbf{H1.} Funds with higher fractions of sponsor-controlled pension assets (DC fraction) have greater exposure to market risk by investing in high-beta stocks.

\textbf{H2.} Funds with increased sponsor-controlled pension assets (DC fraction) increase their exposure to market risk by investing more in high-beta stocks than their current levels.

13 For stock A, excess return is calculated as $-2\% + 1.25 \times 10\% = 10.5\%$; for stock B, it is calculated as $2\% + 0.75 \times 10\% = 9.5\%$.

14 In the perverse case of negative expected excess returns, the optimal strategy of the manager is to choose assets with negative betas. Our focus is on cases in which expected excess returns are positive since asset pricing models implicitly assume a positive expected excess market return (see Campbell and Thompson 2008). Either higher expected market returns or lower expected interest rates result in larger positive excess market returns, which increase the incentive to tilt toward high beta stocks.
The predictions of H1 and H2 test the level and changes in a fund’s market exposure which relate to the benchmarked manager’s incentive to tilt the portfolio toward high-beta stocks. One potential downside of increasing portfolio beta is that it may amplify deviations around the benchmark. Benchmarked managers have incentives to reduce this deviation, and we therefore expect managers in the high-DC group to act strategically so as to maintain or even lower variance around benchmark returns. One strategy that high-DC funds might pursue, on average, is to ensure that betas of their portfolios fall within a narrow range just above one. By contrast, low-DC managers are less constrained to beat the benchmark so accordingly can choose strategies with a wider variance in beta exposure. To illustrate this, consider a group of three low-DC fund managers with portfolio betas of 0.53, 1.03, and 1.53, and a group of three high-DC fund managers with of 1.09, 1.11, and 1.13. The average betas of these two groups are 1.03 and 1.11, but the cross-sectional standard deviation of betas and average tracking errors in the first group are considerably higher. In other words, while we expect high-DC funds to have higher betas, they have an incentive to more precisely target their fund betas to lie just above one so as to maintain or even reduce volatility around the benchmark.

H3. Managers of funds with high portions of sponsor-controlled assets will aim to maintain or reduce volatility around the benchmark.

Our next section provides evidence in favor of these predictions. Finding support of all hypotheses suggests managers respond to sponsor oversight by employing tactics to manage fund returns relative to benchmarks.

3.1 Analyzing retirement asset quintiles

Table 2 summarizes averages, medians, and standard deviations for variables of interest and also divides the sample into quintiles based on the fraction of sponsor-controlled retirement money in
each fund as of the end of year t. For each quintile, we provide averages of several variables of interest, and show the differences between the highest and lowest quintiles in the last column.

Betas, total and idiosyncratic volatility, active share, R-squared, active weight, tracking error, and cross-sectional beta dispersion are measured in year $t+1$. We use other variables such as cash and equity holdings, fund size, and expenses, as controls in our analyses and measure them at the end of year t. Several patterns emerge, providing an early indication that managers respond to the increase in the fraction of sponsor-controlled assets by modifying their portfolio to maximize the possibility of beating the benchmark while minimizing volatility around benchmark returns.

We first observe that a fund’s market beta and its holdings beta monotonically increase with the fraction of DC money, increasing from 1.033 to 1.115 in fund market beta and from 1.071 to 1.158 in fund holdings beta when comparing the lowest and highest quintiles of DC assets. This increase in market risk exposure does not arise because the manager takes on more leverage and shifts the portfolio from cash into equity: Rows labeled “Cash” and “Equity” show that funds with more retirement money do not hold significantly less cash or economically larger positions in equity. Instead, funds with more sponsor-controlled assets have higher betas because these managers invest directly in high-beta stocks rather than borrowing or altering weights in cash and equity.\footnote{To formally test this, we estimate changes in fund beta, ΔFundBeta, as a function of changes in the holdings-level beta, ΔHoldings Beta, and changes in the proportion of assets allocated to equities in year t. The estimation includes year and style fixed effects; we cluster standard errors by fund. Changes in holdings-level betas explain almost one-to-one changes in fund-level betas since the coefficient, 0.905, on ΔHoldings Beta, is insignificantly different from 1. In contrast, change in leverage, as proxied by the change in portfolio allocation to equity, has an economically marginal and statistically insignificant effect on changes in fund beta.} Also, in all our analysis we use both fund and holdings beta. While holdings beta is more susceptible to some measurement issues associated with observing holdings at infrequent intervals, the holdings beta is not directly affected by changes in fund leverage and so helps to control for this potential influence on fund beta.
Table 2 also shows strong evidence that higher DC funds associate with lower volatility around the benchmark. The cross-sectional standard deviation of fund beta is significantly smaller for high-DC funds. We also find that future tracking errors decline significantly from 5.53% in the lowest fraction quintile to 5.16% in the highest quintile. Consistent with incentives to minimize deviation around the benchmark, both Active share and Active weight measures of activeness decline while the R^2-squared measures of passiveness increase with the level of DC assets. Thus, managers respond to more sponsor-controlled assets by forming portfolios to more closely track their benchmarks while at the same time weighting high-beta stocks more heavily. Note that while volatility around the benchmark decreases with DC assets, the total volatility of fund returns increases with higher beta exposure. Therefore, total risk of the fund is increasing with DC assets although the variation in returns around the benchmark is decreasing.

Table 2 also supports evidence documented in prior studies (see Sialm, Starks, and Zhang 2015) that DC plan sponsors use both larger fund sizes and lower expenses as selection criteria in deciding which funds to include on their menu. Note that there is both a strong positive relation between DC fraction and fund size and also a negative correlation between the size of a fund and its beta (-0.13) so fund size does not appear to be spuriously causing our results based on these descriptive correlations. Further confirming this, Tables IA1 and IA2 of the Internet Appendix show that the positive relation between DC fraction and future fund beta becomes even more pronounced when controlling for differences in fund size across the quintiles.

3.2 Market betas versus benchmark betas

In the interest of brevity and to keep the analysis consistent throughout the paper, we present only the results with single-factor market betas since the market index is likely the relevant benchmark for many funds. For reference, Table IA3 of the Internet Appendix reproduces our
key results with style-benchmark betas rather than single-factor market betas. To calculate betas with respect to benchmarks, we first pool all funds with the same Morningstar-defined objective and compute size-weighted returns of each objective (i.e., Cremers et al. 2015). We then calculate benchmark betas as slope coefficients from regressions of a fund’s excess returns on benchmark excess returns. The correlation between market betas and style-benchmark betas exceeds 0.75, and our results remain robust when using style-benchmark betas.

4. Empirical Results

4.1 DC assets and benchmark strategies

We now turn our attention to the key tests of the paper which explore whether managers respond to benchmarking pressures by altering their exposure to market risk. To study this, we proxy for benchmarking pressures from a plan sponsor using the fraction of DC assets in a fund manager’s portfolio and test whether the fraction of DC assets affects a manager’s future decision to alter benchmarking strategies.

In Table 3, we test H1 using pooled regressions of fund or holdings betas on lagged DC fraction and control variables. We cluster standard errors by fund and, following the suggestion of Petersen (2009) and Gormley and Matsa (2014), include year and style fixed effects. We also include lagged betas as regressors to mitigate potential endogeneity between DC fraction and past beta levels of the fund. Consistent with H1, the coefficient on DC fraction is positive and significant when predicting either future fund- or holdings-level beta.

Table 4 tests H2 using a first-difference regression where changes in DC assets are included as regressors to predict future changes in betas. By analyzing the relation between first differences, we try to mitigate concerns of endogeneity that might be present in levels. The
results provide support for H2: managers respond to increases in benchmarking pressures arising from having more DC money by subsequently increasing fund- and holdings-level betas. We return to the question of endogeneity in Table 7 by estimating future changes in DC assets as a function of past changes in beta and show that there is no significant reverse relation.

In all our analyses we are careful to include liquidity measures to control for potential liquidity differences in portfolio holdings of high- and low-DC asset managers. In Tables 3 and 4, the coefficient on DC fraction remains significant after controlling for both the level and changes in a fund’s Amihud illiquidity measure. In Table IA4 of the Internet Appendix, we test directly to see if high-DC funds hold more illiquid assets by repeating the analysis in Tables 3 and 4, but replace the dependent variable with future Amihud illiquidity measures and, for robustness, the future liquidity betas of Pastor and Stambaugh (2003). Overall, there does not appear to be any significant relation between DC fraction and the liquidity of the portfolio. Put together, liquidity differences in fund portfolios do not explain the positive relation between DC assets and fund beta since the results in Tables 3 and 4 are robust when Amihud illiquidity is included as a control and there is no evidence that DC managers have a stronger preference for more liquid or illiquid assets that may spuriously affect managerial risk-taking.

As an additional robustness check, we also ensure that our results relating DC fraction with future beta are not arising simply from observations in the financial crisis. To do this, in Table IA5 of the Internet Appendix, we rerun our analysis in Tables 3 and 4, excluding years 2007, 2008, and 2009 from our sample and obtain results with similar statistical and economic significance.

4.2 Stock betas and portfolio weights
So far we have tested the effect of DC money on benchmarking strategies by analyzing its effect on future levels of and changes in fund beta. In this section, we provide an alternative analysis of how managers may respond to benchmarking pressures by looking directly at how portfolio weights of managers change in response to different levels of DC assets.

Using the entire universe of common stocks for each year, we group firms into terciles containing low-, medium-, and high-beta stocks. For each DC fraction quintile, Table 5 summarizes the fraction of dollars (panel A) and the fraction of stocks (panel B) invested by asset managers into low-, medium-, and high-beta stocks. For instance, in panel A, an average fund with the lowest level of DC assets has a portfolio with 33.3%, 42.9%, and 23.9% of dollars invested in low-, medium-, and high-beta stocks, respectively. For the highest level of DC, this changes to 30.5%, 41.9%, and 27.7%. There is significant shifting from low- to high-beta stocks. Panel B provides similar portfolio breakdowns but where the weights are determined by the number of stocks in the portfolio rather than their dollar value. In dollars, the portfolio tilt to high beta is approximately is 3.8% of the average fund size ($4.907 billion) which represents an approximate $186 million shift in portfolio assets.

Baker, Bradley, and Wurgler (2011) and Buffa, Vayanos, and Woolley (2015) conjecture that benchmarking creates demand for high-beta stocks and this could explain the persistent and puzzling low risk-adjusted returns on high-beta stocks. Therefore, given observed shifts in holdings, Table 5 provides some evidence supporting this conjecture. Benchmarking pressures coincide with increased demand for high-beta stocks (and lower demand for low-beta stocks) which could reinforce the observed low (high) risk-adjusted returns for these stocks.

4.3 Beating benchmark returns
The prior tests show that fund managers with large sponsor-controlled assets appear to alter their portfolios to beat benchmarks, but do these strategies work? In this section, we evaluate first whether beta strategies are successful in positively influencing relative returns, and in the next section we test how successful a manager can expect a beta strategy to be in attracting DC flows. To test the effectiveness of a beta strategy, we estimate the annual *Relative return* of a fund as a function of lagged beta and other lagged controls.

The results, presented in the first two columns of Table 6, show that higher betas correspond to better future performance relative to a style benchmark. The effect is relatively strong: a one-standard-deviation increase in fund beta of 0.261 increases relative performance by 57 bp per year. Tilting the portfolio to high-beta stocks thus appears to be an effective strategy in improving fund performance relative to a benchmark.

In Columns 3 and 4 of Table 6, we repeat the analysis but instead of predicting relative returns, we predict CAPM alphas and find that higher betas correspond insignificantly to future alphas. A manager who chooses a high-beta strategy therefore is successful in improving relative returns without a significant change in alpha so the strategy appears to not hurt the manager or shareholders in terms of risk-adjusted performance.

In Columns 2 and 4, we add *DC fraction* as a regressor to evaluate whether greater sponsor oversight that comes with more DC money corresponds to stronger future relative or risk-adjusted performance that is independent of its beta decision. As Sialm and Starks (2012) find, a higher fraction of DC assets in the fund is not significantly related to either measure of subsequent performance, a result which could arise for a variety of complicating reasons such as the level of fees, size, and other portfolio constraints. The question we consider in the next
section is how sponsors weigh these two effects on returns and if the beta strategy has an overall positive expected effect on flows.

4.4 **Direct and indirect effects on fund flows**

What factors are important to plan sponsors when making choices of funds to include or exclude from their offerings? Sialm, Starks, and Zhang (2015) and Pool, Sialm, and Stefanescu (2016) show that expenses and relative performance are of primary importance in the selection of managers to DC plans. In implementing a high-beta strategy one also needs to know how these criteria will weigh against other fund characteristics such as its risk-adjusted performance, alpha, or its level of risk-taking, beta. Understanding this trade-off has important implications for whether a high-beta strategy is successful.

A high-beta strategy has three possible channels to affect flows: the first is a direct channel while the other two are the indirect channels. As a direct effect of a high-beta strategy, sponsors may avoid investing in funds with higher betas because of the perceived risk. As indirect effects, the high-beta strategy may either improve relative returns or negatively impact fund alpha. If sponsors care most about fund alpha, this latter effect will have a negative impact on flows, and if sponsors care more about relative benchmark returns then this should have a positive effect on flows. Because Table 6 shows that the beta strategy has little effect on fund alpha, we do not expect this indirect channel to have any consequence for flows so our focus is on the flow response to beta and relative returns. Therefore, the open question is how plan sponsors balance higher relative returns against higher beta when deciding whether to include a fund in its menu.

As noted in the introduction, anecdotal evidence from investment policy statements of DC plans suggest that a large majority of DC plans list relative returns as the main criterion for investment. The reliance on a relative return ranking is not surprising given that ERISA
specifically mentions monitoring of investment duties based on “relative returns” compared to the funding objectives of the plan. Using benchmarks as a criterion for investment is much easier to legally defend. While this evidence is only anecdotal, it does provide some support to the notion that relative returns are the dominant criterion used by DC plans for investment decisions. We therefore test how relative returns affect future DC flows when controlling for alpha and beta of the fund.

The model of fund flows in Table 7 builds on prior research and includes relative return, log fund size, turnover, expenses, and other variables as important factors to sponsors for fund selection. Lagged level and change in Beta are included as independent variables to test whether they have any direct effects on future flows. We also include a measure of risk-adjusted return, Alpha, to compare its importance with that of relative returns. If plan sponsors use either Beta or Alpha for the selection of funds then this should undermine the incentive of fund managers to simply choose high-beta stocks with low alphas.

Consistent with the findings of Sialm, Starks, and Zhang (2015), larger fund size, lower expenses and higher relative performance are of first order economic importance to determine DC flows. Recall from Table 6 that a one-standard-deviation increase in the fund beta of 0.261 will improve relative fund performance by 57 bp. The coefficients on relative return of 1.577 and 2.296 in Table 7 suggests that a 57-bp improvement in relative performance will increase fund flows by 0.90% to 1.31%. DC flows are very volatile and median DC flows are slightly negative, so a positive expected influence on flows from relative returns is economically meaningful. It is no surprise that managers take actions to improve their relative returns.

Prior research that has analyzed how relative returns, alpha, and beta affect flows include Del Guercio and Tkac (2002), Berk and van Binsbergen (2016), and Barber, Huang, and Odean (2016).
In contrast, neither level nor change in *Beta* significantly enters. We should also highlight that the insignificance of beta and changes in beta for predicting future DC flows helps to reduce concerns of potential endogeneity issues in relating *DC fraction* to future *Beta*. From Table 4, we find that changes in DC assets predict future changes in beta, but we have no evidence of the reverse causality when predicting changes in DC assets in Table 7. This is suggestive of higher DC assets influencing future choices of fund beta by the manager and not the reverse.

Alpha is a significant predictor of flows when included on its own but becomes insignificant once *Relative return* is added to the regression. This could arise from the lack of precision in estimating alphas versus relative returns and also reflects the correlation between both relative returns and alphas. Regardless, relative returns are clearly an important investment factor after controlling for risk-adjusted returns along with size and expenses. Since plan sponsors do not seem to base their selection of fund managers on beta rank, the incentives to engage in a high-beta strategy is not penalized in terms of lower flows.

4.5 Reducing return volatility around the benchmark

While tilting the portfolio to high-beta stocks appears effective in beating the benchmark and attracting dollars to the fund, the downside of this strategy is the potential to increase tracking error. One strategy that high-DC funds might pursue to have, on average, both higher betas and lower tracking errors is to ensure that betas of their portfolios fall within a narrow range, that is, to more precisely target beta to lie just above one, or just above the risk-level of the index. Doing so increases the likelihood of beating the benchmark while at the same time minimizing the deviation from it. By contrast, low-DC funds face less benchmarking pressure and can choose strategies with a wider variance in beta exposure. In line with this logic and H3, the average cross-sectional volatility of beta is significantly lower in the high-DC group than low-DC group.
As a result, high-DC funds have on average higher future beta and lower future tracking error than low-DC funds.

As a corollary to this, we next explore whether the strategy of more precisely choosing beta is successful in reducing the volatility of returns around the benchmark. To assess this, we use the regression framework in Table 4, but instead analyze if increases in DC assets correspond to increases, decreases, or no change in future volatility around the benchmark returns. We use four measures to proxy for deviation from the benchmark: Tracking error, R-squared, Active share, and Active weight. Table 8 tests whether changes in DC assets affect future changes in our measures of activeness.

The results in Table 8 paint a consistent picture that the increased demand for high-beta stocks does not come at the cost of increased volatility around the benchmark. An increase in the DC assets under management results in a significant increase in R-squared, significant decreases in Active share and Active weight, and has no effect on a fund’s tracking error. If anything, we observe that the deviation of returns around the benchmark becomes smaller and funds become more passive as their DC assets increase. Managers who face stricter benchmarking pressures with sponsor oversight seem to be able to successfully increase their beta while at the same time minimizing effects on volatility around benchmark returns.

While funds with high portions of DC assets are, on average, bigger and have a larger number of stocks in their portfolio (see Sialm and Starks 2012), in untabulated results we find that this does not explain the documented negative relation between DC assets and volatility around the benchmark. In particular, including the level or change in the number of stocks in a
fund’s portfolio as independent variables to the regressions of Table 8 does not alter the relation between change in *DC fraction* and changes in measures of volatility around the benchmark.\(^{17}\)

5. Implication for Investors

What do our findings imply for investors? We already have observed that high-beta strategies improve relative returns without significantly affecting alphas and that the presence of DC sponsors does not seem to add return predictability aside from any impact they have on beta strategies (see Table 6). Our results also provide evidence that managers of large amounts of DC assets tend to take on higher market risk exposure.

For long-term investors, the consequence of more market risk exposure has unclear implications and depends on one’s view of long-run market volatility. A large body of evidence suggests that long-run mean reversion in benchmark returns implies lower long-run volatilities (Barberis 2000; Siegel 2008). If market volatility is lower over longer horizons, then more exposure to the market may not necessarily be a bad outcome for long-term investors. However, Pastor and Stambaugh (2012) argue that mean-reversion is more than offset by parameter uncertainties about expected returns over a long horizon, and they show that long-run volatility over a 25-year (50-year) investment horizon exceeds 1-year short-run volatility by 30% (80%). If long-run market volatility is higher than short-term volatility, then beta shifting by benchmarked managers is only going to exacerbate the exposure of retirement savings to market volatility in the long-term. Funds do not reveal the composition of retirement and nonretirement money they have under management. Investors therefore are unaware ex ante that the manager may be

\(^{17}\) We find that the correlation between the number of stocks in a fund’s portfolio and subsequent tracking error is -0.002 in our sample. This is, perhaps, not surprising because although the number of stocks in a portfolio increases with DC assets (117, 132, 116, 147, and 172 for the DC fraction quintiles), it is large even for the low-DC funds resulting in well-diversified portfolios.
exposed to different benchmarking pressures which could influence a fund’s strategy and risk exposure.

6. Conclusion

Our paper offers two new contributions to the literature. First, it documents the effects that pension plan sponsors can have on managerial incentives and actions. Prior research has focused on the criteria used by plan sponsors in adding funds to and eliminating funds from their menus, whereas we show how these criteria influence managers’ behavior, while they are on the plan platform and under stringent sponsor oversight.

Baker, Bradley, and Wurgler (2011) and Buffa, Vayanos, and Woolley (2015) posit benchmarking as a possible theoretical reason for the persistence of the high-beta, negative-alpha anomaly. Our second contribution is to provide empirical evidence that benchmarking appears to encourage investment in high-beta stocks and may limit the appetite for low-beta stocks. Recent efforts to evaluate managers over longer horizons would only exacerbate the demand for high-beta stocks because realized benchmark returns are more likely to be positive over longer horizons and therefore more likely to reward high-beta strategies. The demand for stocks with high beta can have important implications for pricing of these securities and extensive empirical evidence shows that high-beta stocks persistently underperform low-beta stocks on a risk-adjusted basis (e.g., Frazzini and Pedersen 2014).

We also confirm that the high-beta strategy is an effective tool in attracting investors caring about relative benchmark returns to a fund. On average, DC asset flows depend on
relative lagged performance rather than alpha or beta, so a strategy that selects high-beta stocks with low or negative alphas does not appear to be penalized by DC plan sponsors.

Managers subject to strong sponsor oversight increase beta while at the same time maintaining and even reducing the volatility of returns around the benchmark. They achieve this by more precisely targeting beta to lie on average just above one than do funds without strong sponsor oversight.

Greater risk-taking of funds with more retirement money raises important policy questions especially in the wake of large retirement losses during the recent crisis. Absence of a requirement to disclose the composition of retirement and nonretirement assets implies that investors are ex ante unaware of potential agency conflicts and are unable to avoid them, complicating financial planning.
References

Baker, M., B. Bradley, and J. Wurgler. 2011. Benchmarks as limits to arbitrage: Understanding the low

317.

Balduzzi, P., and J. Reuter. 2012. Heterogeneity in target-date funds and the Pension Protection Act of

Barber, B. M., X. Huang, and T. Odean. 2016. Which risk factors matter to investors? Evidence from

Blake, D., and A. Timmermann. 2002. Performance benchmarks for institutional investors: Measuring,
monitoring and modifying investment behavior. In Performance measurement in finance, ed. J.

Table 1
Mutual fund size and assets held in defined contribution plans

This table summarizes fund size ($ million), defined contribution (DC) retirement assets ($ million), and DC assets as a fraction of fund size (reported in decimals) for our sample of domestic equity funds. Data on DC plan holdings are from annual surveys conducted by Pensions & Investments for the year shown in the first column.

<table>
<thead>
<tr>
<th>Year</th>
<th>Fund size, $ million</th>
<th>DC assets, $ million</th>
<th>DC assets as a fraction of fund size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Mean</td>
</tr>
<tr>
<td>2003</td>
<td>3,886</td>
<td>1,106</td>
<td>1,117</td>
</tr>
<tr>
<td>2004</td>
<td>4,998</td>
<td>1,232</td>
<td>1,448</td>
</tr>
<tr>
<td>2005</td>
<td>4,960</td>
<td>1,265</td>
<td>1,358</td>
</tr>
<tr>
<td>2006</td>
<td>5,612</td>
<td>1,461</td>
<td>1,552</td>
</tr>
<tr>
<td>2007</td>
<td>6,159</td>
<td>1,699</td>
<td>1,604</td>
</tr>
<tr>
<td>2008</td>
<td>3,496</td>
<td>971</td>
<td>872</td>
</tr>
<tr>
<td>2009</td>
<td>4,464</td>
<td>1,294</td>
<td>1,157</td>
</tr>
<tr>
<td>2010</td>
<td>5,220</td>
<td>1,587</td>
<td>1,383</td>
</tr>
<tr>
<td>2011</td>
<td>4,316</td>
<td>1,530</td>
<td>1,216</td>
</tr>
<tr>
<td>2012</td>
<td>4,626</td>
<td>1,592</td>
<td>1,468</td>
</tr>
<tr>
<td>2013</td>
<td>6,303</td>
<td>2,276</td>
<td>1,764</td>
</tr>
<tr>
<td>2003–2013</td>
<td>4,907</td>
<td>1,415</td>
<td>1,352</td>
</tr>
</tbody>
</table>
Table 2
Summary statistics

This table reports in the first three columns average, median, and standard deviation of fund characteristics. In the next five columns, it summarizes average characteristics of funds assigned into quintiles on the basis of the fraction of a fund’s assets in defined contribution plans at the end of year \(t \) (DC fraction). The final column reports the average difference in the fund characteristic between funds in the top and bottom DC fraction quintiles with a corresponding \(t \)-statistic in brackets. The subscript \(t \) or \(t+1 \) denotes the year when the characteristics are measured. Fund beta and idiosyncratic volatility are from market model regressions on monthly data in year \(t+1 \). Holdings-level beta for year \(t+1 \) are calculated using market model betas for each stock held by a fund and taking the value-weighted average of these betas for each fund where the weights are determined as the portfolio weight of the stock at the end of year \(t+1 \). Active share for year \(t+1 \) is obtained from Martijn Cremers’ Web site and represents the proportion of a fund’s holdings that is different from the holdings of the fund’s benchmark, as in Cremers and Petajisto (2009). R-squared values are from Carhart (1997) four-factor model regressions on year \(t+1 \) data. Active weight in decimals for year \(t+1 \) is the fraction of a fund’s portfolio holdings that differs from the value-weighted index of these holdings, computed as one-half times the sum of the absolute differences between a portfolio weight of a stock and its weight if the portfolio were value weighted. Tracking error in percent for year \(t+1 \) is from Morningstar. Total volatility for year \(t+1 \) is the annualized monthly standard deviation of fund returns measured in percent. Standard deviation of beta is the intraquintile standard deviation. Cash and equity are in percent of portfolio assets. Turnover is the lesser of purchases or sales over the year expressed as a percent of fund assets. Total expenses in percent of portfolio assets include fee waivers. The annualized relative return of the fund is computed relative to a Morningstar category benchmark for year \(t \). DC flow is the annual flow of DC assets, computed as (DC assets \(i,t \) – DC assets \(i,t-1 \) (1 + \(R_{it} \))) / (DC assets \(i,t-1 \) (1 + \(R_{it} \))), where DC assets \(i,t \) is the dollar value of defined contribution assets in fund \(i \) at the end of year \(t \) and \(R_{it} \) is the realized annual return earned by investors (assuming all distributions are reinvested) from the end of year \(t-1 \) to the end of year \(t \). Amihud illiquidity of a stock in a given year is the average of its daily absolute returns scaled by dollar volume, and the reported illiquidity of a fund value-weights the individual stock illiquidity measures where the value weights are determined based on the market value of stocks in the fund’s portfolio.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Median</th>
<th>SD</th>
<th>Low DC</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>High DC</th>
<th>High-Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Key variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC fraction (i,t) (in decimals)</td>
<td>0.239</td>
<td>0.184</td>
<td>0.212</td>
<td>0.023</td>
<td>0.089</td>
<td>0.187</td>
<td>0.315</td>
<td>0.581</td>
<td>0.559 [106.7]</td>
</tr>
<tr>
<td>Fund beta (i,t)</td>
<td>1.075</td>
<td>1.031</td>
<td>0.261</td>
<td>1.033</td>
<td>1.062</td>
<td>1.077</td>
<td>1.084</td>
<td>1.115</td>
<td>0.082 [6.61]</td>
</tr>
<tr>
<td>Holdings-level beta (i,t)</td>
<td>1.111</td>
<td>1.058</td>
<td>0.282</td>
<td>1.071</td>
<td>1.095</td>
<td>1.109</td>
<td>1.122</td>
<td>1.158</td>
<td>0.087 [6.37]</td>
</tr>
<tr>
<td>B. Measures of deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active share (i,t) (in decimals)</td>
<td>0.779</td>
<td>0.847</td>
<td>0.229</td>
<td>0.787</td>
<td>0.782</td>
<td>0.789</td>
<td>0.772</td>
<td>0.764</td>
<td>-0.022 [-1.84]</td>
</tr>
<tr>
<td>R-squared (i,t) (in decimals)</td>
<td>0.918</td>
<td>0.952</td>
<td>0.111</td>
<td>0.907</td>
<td>0.917</td>
<td>0.916</td>
<td>0.922</td>
<td>0.927</td>
<td>0.020 [3.90]</td>
</tr>
<tr>
<td>Active weight (i,t) (in decimals)</td>
<td>0.620</td>
<td>0.636</td>
<td>0.241</td>
<td>0.674</td>
<td>0.632</td>
<td>0.607</td>
<td>0.610</td>
<td>0.577</td>
<td>-0.097 [-8.24]</td>
</tr>
<tr>
<td>Tracking error (i,t) (in % per year)</td>
<td>5.273</td>
<td>4.626</td>
<td>3.129</td>
<td>5.530</td>
<td>5.287</td>
<td>5.202</td>
<td>5.189</td>
<td>5.159</td>
<td>-0.371 [-2.43]</td>
</tr>
<tr>
<td>Idiosyncratic vol (i,t) (in % per year)</td>
<td>4.633</td>
<td>4.055</td>
<td>2.899</td>
<td>4.522</td>
<td>4.575</td>
<td>4.660</td>
<td>4.698</td>
<td>4.708</td>
<td>0.186 [0.89]</td>
</tr>
<tr>
<td>Total volatility (i,t) (in % per year)</td>
<td>13.64</td>
<td>12.01</td>
<td>5.390</td>
<td>13.28</td>
<td>13.48</td>
<td>13.53</td>
<td>13.70</td>
<td>14.29</td>
<td>1.016 [2.51]</td>
</tr>
<tr>
<td>Standard deviation of fund beta (i,t)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.245</td>
<td>0.230</td>
<td>0.232</td>
<td>0.221</td>
<td>0.219</td>
<td>-0.026 [-3.09]</td>
</tr>
<tr>
<td>C. Asset composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash (i,t) (in %)</td>
<td>2.804</td>
<td>2.142</td>
<td>6.862</td>
<td>3.408</td>
<td>2.263</td>
<td>2.300</td>
<td>3.058</td>
<td>3.029</td>
<td>-0.379 [-1.32]</td>
</tr>
<tr>
<td>Equity (i,t) (in %)</td>
<td>96.17</td>
<td>97.49</td>
<td>5.43</td>
<td>95.26</td>
<td>96.38</td>
<td>96.24</td>
<td>96.28</td>
<td>96.67</td>
<td>1.416 [4.33]</td>
</tr>
<tr>
<td>D. Control variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fund size (i,t) (in millions)</td>
<td>4.907</td>
<td>1.415</td>
<td>12.383</td>
<td>2.818</td>
<td>3.999</td>
<td>5.311</td>
<td>6.128</td>
<td>6.264</td>
<td>3.446 [6.29]</td>
</tr>
<tr>
<td>DC flows, (in decimals)</td>
<td>0.216</td>
<td>-0.038</td>
<td>1.513</td>
<td>0.285</td>
<td>0.218</td>
<td>0.190</td>
<td>0.182</td>
<td>0.224</td>
<td>-0.061</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Turnover, (in %)</td>
<td>63.57</td>
<td>51.00</td>
<td>54.73</td>
<td>62.37</td>
<td>62.47</td>
<td>65.52</td>
<td>64.88</td>
<td>62.65</td>
<td>0.282</td>
</tr>
<tr>
<td>Expenses, (in %)</td>
<td>1.060</td>
<td>1.040</td>
<td>0.407</td>
<td>1.188</td>
<td>1.078</td>
<td>1.055</td>
<td>1.011</td>
<td>0.970</td>
<td>-0.218</td>
</tr>
<tr>
<td>Relative return, (in decimals)</td>
<td>0.000</td>
<td>0.001</td>
<td>0.054</td>
<td>-0.001</td>
<td>-0.002</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td>Amihud illiquidity, (in decimals)</td>
<td>0.006</td>
<td>0.000</td>
<td>0.050</td>
<td>0.015</td>
<td>0.005</td>
<td>0.004</td>
<td>0.003</td>
<td>0.004</td>
<td>-0.011</td>
</tr>
</tbody>
</table>
Table 3
Effect of DC assets on funds’ future betas

This table reports results from regressions of fund-level betas (regressions 1 and 2), and holdings-level betas (regressions 3 and 4) in year $t+1$ on fund characteristics measured at the end of year t. Fund beta for year $t+1$ is computed from the market model regressions on monthly fund returns in year $t+1$. Holdings-level beta for year $t+1$ is calculated using market model betas in year $t+1$ for each stock and taking the value-weighted average of these betas for each fund where the weights are determined by the fund’s portfolio weight of the stock at the end of year $t+1$. t-statistics shown in brackets are based on standard errors clustered by fund. Regressions include year and style fixed effects. Section 2 and Table 2 detail the remaining variable definitions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Fund beta$_{t+1}$</th>
<th>Holdings-level beta$_{t+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>DC fraction$_t$</td>
<td>0.083</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>[3.67]</td>
<td>[3.78]</td>
</tr>
<tr>
<td>Expenses$_t$</td>
<td>0.058</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>[3.45]</td>
<td>[3.12]</td>
</tr>
<tr>
<td>Log fund size$_t$</td>
<td>-0.002</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>[-0.71]</td>
<td>[-0.56]</td>
</tr>
<tr>
<td>Relative return$_t$</td>
<td>0.300</td>
<td>0.242</td>
</tr>
<tr>
<td></td>
<td>[3.47]</td>
<td>[3.18]</td>
</tr>
<tr>
<td>Turnover$_t$</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>[2.01]</td>
<td>[1.48]</td>
</tr>
<tr>
<td>Amihud illiquidity$_t$</td>
<td>-0.406</td>
<td>-0.233</td>
</tr>
<tr>
<td></td>
<td>[-4.75]</td>
<td>[-4.53]</td>
</tr>
<tr>
<td>Fund beta$_t$</td>
<td>0.419</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[19.5]</td>
<td></td>
</tr>
<tr>
<td>Holdings-level beta$_t$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.287</td>
<td>0.417</td>
</tr>
<tr>
<td>Number of observations</td>
<td>4,094</td>
<td>4,094</td>
</tr>
</tbody>
</table>
Table 4
Determinants of changes in funds’ betas

This table reports results from regressions of changes in fund-level betas (regression 1), and holdings-level betas (regression 2) between years t and $t+1$ on variables measured at the end of year t and changes in variables measured between years $t-1$ and t. Fund-level betas are from market model regressions on monthly data. Holdings-level beta for year $t+1$ is calculated using market model betas for each stock in year $t+1$ and taking the value-weighted average of these betas where the weights are determined by the portfolio weight of the stock at the end of year $t+1$. t-statistics shown in brackets are based on standard errors clustered by fund. Regressions include year and style fixed effects. Section 2 and Table 2 detail variable definitions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Fund beta$_{t:t+1}$</th>
<th>Holdings-level beta$_{t+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in DC fraction$_{t-1:t}$</td>
<td>0.084</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>[4.90]</td>
<td>[3.26]</td>
</tr>
<tr>
<td>Change in fund beta$_{t-1:t}$</td>
<td>-0.336</td>
<td>-0.376</td>
</tr>
<tr>
<td></td>
<td>[-18.5]</td>
<td>[-9.15]</td>
</tr>
<tr>
<td>Change in holdings-level beta$_{t-1:t}$</td>
<td></td>
<td>-0.376</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[-9.15]</td>
</tr>
<tr>
<td>Change in expenses$_{t-1:t}$</td>
<td>0.016</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>[1.88]</td>
<td>[1.81]</td>
</tr>
<tr>
<td>Change in turnover$_{t-1:t}$</td>
<td>-0.002</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>[-0.84]</td>
<td>[-0.78]</td>
</tr>
<tr>
<td>Change in log fund size$_{t-1:t}$</td>
<td>0.003</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>[1.69]</td>
<td>[0.80]</td>
</tr>
<tr>
<td>Change in Amihud illiquidity$_{t-1:t}$</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>[-6.48]</td>
<td>[-3.35]</td>
</tr>
<tr>
<td>DC fraction$_{t}$</td>
<td>0.017</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>[1.19]</td>
<td>[1.60]</td>
</tr>
<tr>
<td>Relative return$_{t}$</td>
<td>0.083</td>
<td>0.232</td>
</tr>
<tr>
<td></td>
<td>[0.92]</td>
<td>[1.24]</td>
</tr>
<tr>
<td>R^2</td>
<td>0.287</td>
<td>0.365</td>
</tr>
<tr>
<td>Number of observations</td>
<td>2,997</td>
<td>2,994</td>
</tr>
</tbody>
</table>
Table 5
Effect of DC assets on funds’ allocations into stocks with different betas

Panel A reports the fraction of dollars in a fund’s portfolio allocated to low-, medium-, and high-beta stocks. Panel B shows the fraction of stocks in a fund’s portfolio that are allocated to low-, medium-, and high-beta stocks. Market betas for each stock are computed using monthly data in year $t+1$. Assignment of each stock into market beta terciles is determined by the distribution of year $t+1$ market betas of all common stocks listed on NYSE, AMEX, and Nasdaq. The first five columns of both panels summarize average portfolio allocations for funds that have been sorted into quintiles based on the fraction of assets in DC plans as of the end of year t. The last column of both panels reports the difference in portfolio allocations between funds with the highest and lowest amount of DC assets. A t-statistic of the difference is provided in brackets.

<table>
<thead>
<tr>
<th>Beta tercile</th>
<th>Low DC</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>High DC</th>
<th>High-low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Fraction of dollars allocated to different beta groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.333</td>
<td>0.324</td>
<td>0.319</td>
<td>0.315</td>
<td>0.305</td>
<td>-0.028 [-4.09]</td>
</tr>
<tr>
<td>Med</td>
<td>0.429</td>
<td>0.428</td>
<td>0.428</td>
<td>0.426</td>
<td>0.419</td>
<td>-0.010 [-1.72]</td>
</tr>
<tr>
<td>High</td>
<td>0.239</td>
<td>0.248</td>
<td>0.252</td>
<td>0.259</td>
<td>0.277</td>
<td>0.038 [7.42]</td>
</tr>
<tr>
<td>B. Fraction of stocks held in different beta groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.318</td>
<td>0.312</td>
<td>0.309</td>
<td>0.301</td>
<td>0.291</td>
<td>-0.027 [-4.17]</td>
</tr>
<tr>
<td>Med</td>
<td>0.422</td>
<td>0.422</td>
<td>0.420</td>
<td>0.418</td>
<td>0.406</td>
<td>-0.016 [-1.56]</td>
</tr>
<tr>
<td>High</td>
<td>0.260</td>
<td>0.267</td>
<td>0.271</td>
<td>0.281</td>
<td>0.303</td>
<td>0.043 [8.32]</td>
</tr>
</tbody>
</table>
Table 6
Fund performance as explained by fund beta

This table reports results from regressions of a fund’s annual relative return (in decimals) (regressions 1 and 2) and a fund’s alpha in year \(t+1 \) (regressions 3 and 4) on lagged variables. Relative return is expressed in decimals and measures the difference between the annual fund returns and an annual Morningstar category benchmark during year \(t+1 \). Market alpha is computed from market model regressions of monthly fund data in year \(t+1 \). \(t \)-statistics shown in brackets are based on standard errors clustered by fund. Regressions include year and style fixed effects. Section 2 and Table 2 detail variable definitions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Relative return(_{t+1})</th>
<th>Market alpha(_{t+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Fund beta(_{t})</td>
<td>0.022</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>[4.66]</td>
<td>[4.63]</td>
</tr>
<tr>
<td>Log fund size(_{t})</td>
<td>-0.002</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>[-2.94]</td>
<td>[-2.95]</td>
</tr>
<tr>
<td>Expenses(_{t})</td>
<td>-0.008</td>
<td>-0.008</td>
</tr>
<tr>
<td>Relative return(_{t})</td>
<td>0.021</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>[1.08]</td>
<td>[1.08]</td>
</tr>
<tr>
<td>Turnover(_{t})</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>[-1.21]</td>
<td>[-1.21]</td>
</tr>
<tr>
<td>Amihud illiquidity(_{t})</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>[0.38]</td>
<td>[0.39]</td>
</tr>
<tr>
<td>DC fraction(_{t})</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.28]</td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.045</td>
<td>0.045</td>
</tr>
<tr>
<td>Number of observations</td>
<td>4,094</td>
<td>4,094</td>
</tr>
</tbody>
</table>
Table 7
Determinants of defined contribution flows

This table reports results from regressions of defined contribution (DC) flows between years \(t \) and \(t+1 \) on variables measured at the end of year \(t \) and changes in fund beta measured between the end of year \(t-1 \) and year \(t \). DC flow in year \(t+1 \) is the annual flow of DC assets, computed as \((\text{DC assets}_{i,t+1} - \text{DC assets}_{i,t} \times (1 + R_{i,t+1})) / (\text{DC assets}_{i,t} \times (1 + R_{i,t+1}))\), where \(\text{DC assets}_{i,t+1} \) is the dollar value of defined contribution assets in fund \(i \) at the end of year \(t+1 \) and \(R_{i,t+1} \) is the realized annual return earned by investors (assuming all distributions are reinvested) from the end of year \(t \) to the end of year \(t+1 \). \(t \)-statistics shown in brackets are based on standard errors clustered by fund. Regressions include year and style fixed effects. Section 2 and Table 2 detail variable definitions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative return,(t)</td>
<td>2.296</td>
<td>1.577</td>
<td>1.637</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.88]</td>
<td>[2.41]</td>
<td>[2.70]</td>
<td></td>
</tr>
<tr>
<td>Log fund size,(t)</td>
<td>-0.076</td>
<td>-0.076</td>
<td>-0.076</td>
<td>-0.081</td>
</tr>
<tr>
<td>Turnover,(t)</td>
<td>-0.019</td>
<td>-0.020</td>
<td>-0.019</td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td>[-1.27]</td>
<td>[-1.48]</td>
<td>[-1.31]</td>
<td>[-1.37]</td>
</tr>
<tr>
<td>Expenses,(t)</td>
<td>-0.136</td>
<td>-0.127</td>
<td>-0.135</td>
<td>-0.136</td>
</tr>
<tr>
<td></td>
<td>[-2.31]</td>
<td>[-2.23]</td>
<td>[-2.29]</td>
<td>[-2.13]</td>
</tr>
<tr>
<td>Fund beta,(t)</td>
<td>-0.061</td>
<td>-0.039</td>
<td>-0.049</td>
<td>-0.044</td>
</tr>
<tr>
<td></td>
<td>[-0.49]</td>
<td>[-0.58]</td>
<td>[-1.11]</td>
<td>[-1.28]</td>
</tr>
<tr>
<td>Idiosyncratic volatility,(t)</td>
<td>-0.016</td>
<td>-0.009</td>
<td>-0.011</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>[-1.29]</td>
<td>[-0.74]</td>
<td>[-0.89]</td>
<td>[-0.74]</td>
</tr>
<tr>
<td>Amihud illiquidity,(t)</td>
<td>0.248</td>
<td>0.219</td>
<td>0.252</td>
<td>0.290</td>
</tr>
<tr>
<td></td>
<td>[0.82]</td>
<td>[1.03]</td>
<td>[0.92]</td>
<td>[1.18]</td>
</tr>
<tr>
<td>Change in fund beta,(t-1:t)</td>
<td>0.035</td>
<td>0.037</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.41]</td>
<td>[1.52]</td>
<td>[1.54]</td>
<td></td>
</tr>
<tr>
<td>Fund alpha,(t)</td>
<td>1.740</td>
<td>0.678</td>
<td>0.646</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.42]</td>
<td>[1.41]</td>
<td>[1.56]</td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.041</td>
<td>0.040</td>
<td>0.042</td>
<td>0.049</td>
</tr>
<tr>
<td>Number of observations</td>
<td>3,024</td>
<td>3,024</td>
<td>3,024</td>
<td>3,029</td>
</tr>
</tbody>
</table>
Table 8
Effects of change in DC assets on managerial activeness

This table reports results from regressions of changes in active share, R-squared, active weight, and tracking error between years t and $t+1$ on fund characteristics measured at the end of year t and changes in fund characteristics measured between years $t-1$ and t. Active share for year $t+1$ is obtained from Martijn Cremers’ Web site and represents the proportion of a fund’s holdings that is different from the holdings of the fund’s benchmark, as in Cremers and Petajisto (2009). R-squared values are from Carhart (1997) four-factor model regressions using year $t+1$ data. Active weight in decimals for year $t+1$ is fraction of a fund’s portfolio holdings that differs from the value-weighted index of these holdings, computed as one-half times the sum of the absolute differences between a portfolio weight of a stock and its weight if the portfolio were value-weighted. Tracking error for year $t+1$ is from Morningstar. t-statistics shown in brackets are based on standard errors clustered by fund. Regressions include year and style fixed effects. Section 2 and Table 2 detail variable definitions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Active share$_{t+1}$</th>
<th>R-squared$_{t+1}$</th>
<th>Active weight$_{t+1}$</th>
<th>Tracking error$_{t+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in DC fraction$_{t-1:t}$</td>
<td>-0.007 [-3.87]</td>
<td>0.037 [3.65]</td>
<td>-0.013 [-3.12]</td>
<td>-0.044 [-1.08]</td>
</tr>
<tr>
<td>Change in log fund size$_{t-1:t}$</td>
<td>0.000 [0.15]</td>
<td>-0.001 [-2.67]</td>
<td>0.000</td>
<td>0.017</td>
</tr>
<tr>
<td>Change in turnover$_{t-1:t}$</td>
<td>0.000 [0.24]</td>
<td>0.000 [0.28]</td>
<td>0.021</td>
<td>-0.060</td>
</tr>
<tr>
<td>Change in expenses$_{t-1:t}$</td>
<td>-0.004 [-0.76]</td>
<td>0.002 [0.59]</td>
<td>-0.008 [-0.82]</td>
<td>-0.117 [-0.20]</td>
</tr>
<tr>
<td>Change in fund beta$_{t-1:t}$</td>
<td>-0.007 [-1.42]</td>
<td>0.010 [0.85]</td>
<td>0.023</td>
<td>-0.311 [-1.90]</td>
</tr>
<tr>
<td>Change in Amihud illiquidity$_{t-1:t}$</td>
<td>0.000 [-0.67]</td>
<td>0.000 [3.18]</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>DC fraction$_{t}$</td>
<td>-0.013 [-1.62]</td>
<td>0.003 [0.64]</td>
<td>-0.015</td>
<td>0.092</td>
</tr>
<tr>
<td>Relative return$_{t}$</td>
<td>0.050 [2.18]</td>
<td>-0.005 [-0.18]</td>
<td>-0.096</td>
<td>1.357</td>
</tr>
<tr>
<td>Change in active share$_{t-1:t}$</td>
<td>-0.098 [-2.90]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in R-square$_{t-1:t}$</td>
<td></td>
<td>-0.230 [-7.19]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in active weight$_{t-1:t}$</td>
<td></td>
<td></td>
<td>-0.335 [-7.04]</td>
<td></td>
</tr>
<tr>
<td>Change in tracking error$_{t-1:t}$</td>
<td></td>
<td></td>
<td></td>
<td>-0.229 [-9.12]</td>
</tr>
<tr>
<td>R^2</td>
<td>0.104</td>
<td>0.335</td>
<td>0.247</td>
<td>0.542</td>
</tr>
<tr>
<td>Number of observations</td>
<td>2,994</td>
<td>2,997</td>
<td>2,994</td>
<td>2,997</td>
</tr>
</tbody>
</table>